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Abstract    The determination of visibility relations within polygonal 
environments has applications in many different fields; In the current context it 
is primarily investigated as a basis for spatial architectural analysis, and as a 
design driver for architectural design from a user and occupant perspective, but 
it is equally applicable to a wide range of engineering problems and it’s a well-
established topic in computational geometry. 
We introduce a new query-based algorithm for traversing over the visible 
convex regions of a polygon with holes from any point inside the polygon or 
from any of its vertices, where each query runs in O(f’ h’ + log n) for a polygon 
with n vertices, f’ visible convex partitions, and h’ visible holes, with a 
preprocessing stage that runs in O(n log* n) with O(n) space. The log n 
component of the query only applies to internal points. The visibility polygon 
traversal algorithm is applicable to a varied set of visibility problems, including 
the construction of visibility polygons (isovists), and visibility graphs of polygon 
vertices and/or points inside the polygon. 
The algorithmic findings are linked to spatial architectural analysis by 
representing the regions of architectural or urban plans that are permeable or 
visually open as polygons with holes. Two applications of the algorithm are 
presented, which have enabled more responsive and dynamic user interactions 
with architectural plans. These consist of an interactive isovist tool and a tool 
for calculating shortest paths, flows and distances within a multi-storey layout. 
 

Fig. 1 An interactive application of the algorithm that constructs a number of visibility 
polygons in real time.  Here used to manually work out an approximation to the art gallery 

problem (Honsberger, 1976) in Louis Sullivan’s National Farmer's Bank of Owatonna 
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Visibility methods in architecture and computational geometry 
The work presented in this paper borrows methodologies and concepts from spatial 

architectural analysis as well as computational geometry, and is an attempt to reconcile some of 
the shared concepts and methods in these fields.  

The term isovist was developed first by Tandy (1967) for landscape analysis and originally 
referred to the field of view from a particular location, where visibility was understood literally in 
terms of human perception. In spatial architectural analysis isovists and isovist fields were 
formally introduced as a tool for the analysis and description of architectural space by Benedikt 
(1979) who developed a set of mathematical measures of isovists in order to quantify a range of 
visual and experiential aspects of space.  

Isovists have since become one of the basic methods of analysis used in space syntax. Hillier 
(1996) superimposed isovists of a set of convex polygons to show how the squares in Rome 
created a network of visually connected nodes. Turner and Penn (1999) continued to investigate 
the interconnectivity of points and introduced isovist integration analysis. The method which now 
is commonly referred to as visibility graph analysis (VGA) (Turner et al., 2001) consisted of 
creating a graph of mutually visible points on which measures such as mean depth could be 
computed. As these developments have taken place, the initial idea of visibility as a perception-
based concept, then towards describing experience of space, seem now to have been replaced by 
one describing movement. In VGA the input typically represents permeability rather than 
visibility, where depth describes how many turns are needed in order to reach another location. 
Sheep and Ruth Dalton (2009) point out the visibility accessibility problem that occurs when 
there are discrepancies between visual and permeable links, and propose a layered graph to 
capture these two relations explicitly. 

The notion of geometric visibility in computational geometry, which seems to have been 
developed almost in parallel to the architectural analysis research described so far, is regarded as 
one of the most fundamental concepts and forms the foundation of a range of seemingly unrelated 
problems such as polygon partitioning and robotic motion planning. Here two points, u and v, are 
said to be mutually visible if the line segment bounded by u and v does not intersect any of the 
line segments of the polygon in which they are either vertices of, or that they are contained 
within. Point visibility polygons, or visibility regions are similar to isovists as they have been 
generally applied in spatial analysis (as a 2D section rather than a 3D volume, with some 
exceptions (Derix et al., 2008)), and the term visibility graph is used similarly in both fields, with 
the distinction that it in computational geometry the points usually refers to vertices of a polygon, 
while it in space syntax is typically assumed to be a grid of points inside a polygon. For more 
detailed definitions of geometric visibility and its related problems see O’Rourke (1987). 

Some visibility algorithms are output-sensitive meaning that their time complexity primarily 
depends on the size of the output rather than the input. A group of these, which are similar to ours 
in that they have pre-processing stage for building data structures on which they can perform 
queries, are based on visibility decomposition which decomposes a polygon into visually stable 
regions, a similar concept to the e-partitions proposed by Peponis et al. (1997). Lu et al. (2011) 
introduced a query-based algorithm for finding the visibility of a polygon with holes that first 
partitions the polygon into simple polygons. It runs in O(v + h + log2 m + h log (n / h)) time, 
where v is the size of the output polygon, m is the size of the simple polygon containing the 
viewpoint. The preprocessing stage has a time complexity of O(n2 log n). 

For visibility graphs for a set of obstacles (equivalent of just considering the holes of the 
polygon) there exist a number of output-sensitive algorithms with lower time complexity than the 
one presented here. Pocchiola and Vegter (1996) runs in time O(n log n + k), where k is the 
number of edges, and uses O(n) space. Also see Overmars and Welzl (1988), and Gosh and 
Mount (1991). 
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A query-based algorithm for traversing visible convex regions 
The visibility polygon traversal algorithm introduced here offers a traversal of visible convex 

regions of a polygon from a point. The algorithm provides a depth-first traversal, in counter-
clockwise order. We use a polygon with holes P or a convex partition mesh M = (V, E, F) 
describing P with a point vp inside the polygon, or any polygon vertex pv ∈ P or mesh vertex mv 
∈ M as the source of the visibility calculation. These options can be used when a mesh 
representation already exists for other purposes (e.g. for rendering or as a modeling approach) and 
for making any number of subsequent queries on the same polygon from different viewpoints.  

The algorithm is based on a modified depth-first search (DFS) through the face connectivity 
graph of the mesh. The traversal keeps left and right constraints for each new face it visits, which 
is continuously narrowed by the vertices of the edges it has traversed thus far, and consists of the 
rightmost left point l, and the leftmost right point r from vp in the direction of the search. An 
adjacent face is only visited if the common edge falls within these constraints. The algorithm 
differs from a standard DFS in that we do not keep track of already visited faces. This is not 
necessary due to the left and right constraints, and in certain cases a face will be correctly visited 
several times with different constraints. 

 

Fig. 2 The execution of the visibility polygon traversal algorithm. The input is a polygon with holes and the point vp. Before 
the execution of the traversal the polygon is triangulated and the starting triangle in which vp is contained is found. In (a)-

(g) the darker shade indicate the current triangle and the brighter shade indicate the internal stack. Here, the traversal 
algorithm is used to build a representation of the visibility polygon that distinguishes between open (permeable) edges 
and boundary (solid) edges, but the same mechanism can be used to build other structures, such as the visibility graph 

Two configurable operations are explicitly written out in the pseudocode 1  to support 
extensions that solve specific visibility determination problems. 

 

                                                           
1 The pseudocode conventions used here follow the rules described in Cormen et al. (2001, p. 19). 
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VPT-INSIDE(P, vp) 
1   M ← TRIANGULATE(P) 
2   f ← FIND-FACE(M, vp) 
3   VPT-INSIDE(M, f, vp) 
 
VPT-INSIDE(M, f, vp) 
1   VPT-VISIT(M, f, NIL, vp, NIL, NIL) 
 
VPT-VERTEX(P, pv) 
1   M ← TRIANGULATE(P) 
2   mv ← FIND-VERTEX(M, pv) 
3   VPT-VERTEX(M, mv) 
 
VPT-VERTEX(M, mv) 
1   vp ← position[mv] 
2   for each f ∈ F[mv] 
3         do r ← position[NEXT(f, mv)] 
4              l ← position[PREVIOUS(f, mv)] 
5              VPT-VISIT(M, f, NIL, vp, r, l) 
 
VPT-VISIT(M, f, eParent, vp, r, l) 
1   VPT-FACE-OPERATION(M, f, eParent, vp, r, l) 
2   for each e ∈ EDGES(f, eParent) 
3         do eRight ← pos[start[e]] 
4              eLeft ← pos[end[e]] 
5              if EDGE-IN-VIEW(vp, r, l, eRight, eLeft) 
6                  then fAdj ← ADJACENT(f, e) 
7                          if fAdj = NIL 
8                             then VPT-BOUNDARY-EDGE-OPERATION(M, f, e, vp, r, l) 
9                             else if eRight ≠ vp and eLeft ≠ vp 
10                                      then  rAdj ← LEFTMOST(vp, r, eRight) 
11                                               lAdj ← RIGHTMOST(vp, l, eLeft) 
12                                               VPT-VISIT(M, fAdj, e, vp, rAdj, lAdj) 
 
EDGE-IN-VIEW(vp, r, l, eRight, eLeft) 
1   if r = NIL or l = NIL 
2      then return TRUE 
3   if TEST(vp, l, eRight) = LEFT or TEST(vp, r, eLeft) = RIGHT 
4      then return FALSE 
5   return TRUE 
 
LEFTMOST(vp, r, eRight) 
1   if r = NIL or TEST(vp, r, eRight) = LEFT 
2      then return eRight 
3      else return r  
 
VPT-FACE-OPERATION(M, f, eParent, vp, r, l) 
1    ► A configurable operation. The visible convex region is bounded by the input parameters 
 
VPT-BOUNDARY-EDGE-OPERATION(M, f, e, vp, r, l) 
1    ► A configurable operation. The visible edge is bounded by the input parameters 
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The pseudocode specifies both the cases of visibility from a point within a polygon or mesh 
(VPT-INSIDE), or from one of the vertices of a polygon or a mesh (VPT-VERTEX). In the case 
of using a polygon as an input, it is first partitioned into convex polygons. Any triangulation 
which does not insert additional vertices can be used, but Seidel’s algorithm provides the fastest 
running time of O(n log* n) (Seidel, 1991) and it has been shown to work for polygons with holes 
(Lamot et al., 2000).  

A half-edge mesh (Weiler, 1988) or equivalent data structure is used that allows constant time 
access to adjacent faces and can iterate over the edges of the face in a counter-clockwise order. 
ADJACENT(f, e) is included in the interface to the mesh data structure, and returns the adjacent 
face over an edge, or if the edge is on the boundary it returns a null pointer. The EDGES(f, e) 
operation returns the edges of a face except e, in a counter-clockwise order starting from the edge 
adjacent to e, to ensure a counter-clockwise order of the whole traversal. In the same manner e ∈ 
E[f] refers to the edges of f in a counter-clockwise order, and f ∈ F[mv] refers to the faces adjacent 
to mv in a counter-clockwise order.  

Depending on the application we may need to either locate the mesh vertex corresponding to 
the polygon vertex (FIND-VERTEX), or to locate the partition a point is contained in (FIND-
FACE). For mesh vertices we can create references when the mesh is created, and they can be 
retrieved in O(1) time. The same is true when viewpoints inside the mesh are determined from the 
faces themselves (for example for a uniform grid). However if vp is arbitrary we need to use a 
planar point location algorithm. The algorithm by Kirkpatrick (1983) which finds the triangle in 
O(log n) time can be used with our triangulation M, which results in additional preprocessing that 
runs in only O(n), and does not change the time complexity order of the preprocessing stage. 

Finally, the algorithm relies on a geometric half-plane test. TEST returns RIGHT, LEFT OR 
STRAIGHT depending on the orientation of the third point in relation to the line defined by the 
two first. LEFTMOST and RIGHTMOST takes three points as parameters and simply return a 
reference to which of the two last point is further left, or right, in relation to the first points, given 
that the angle between the points is always smaller than 180°. 

Additional constraints are straightforward to include in the algorithm. For example a view 
triangle with a limited field of view can be set by changing the initialisation of the query, or a 
maximum metric traversal distance can be defined by changing the return condition of the 
recursion. 

We see from this preliminary analysis that each query takes O(f’ h’ + log n) time where f’ are 
the number of visible faces and h’ are the number of visible holes (meaning partly or fully visible 
from vp), and n is the number of vertices in the original polygon. Each visible convex partition is 
visited for the number of different visible convex regions of f which is bounded from above by h’. 
Furthermore we see that the log n component can be discarded for the cases where we already 
know which partition vp lies in or when vp is one of the vertices of the original polygon.  

The traversal has an output sensitive running time; meaning that the running time is 
dependent on the number of visible convex partitions. The running time of the query is not 
guaranteed to be proportional to the number of vertices in the output visibility polygon or number 
of edges in the visibility graph, since some of the visited regions may not contain visible 
boundary edges (only internal edges), nor visible vertices. 

Isovist tool 
As case studies we have integrated the algorithm in two existing tools at Aedas R&D. The 

first tool calculates the visibility polygon of one or more points and allows the user to 
interactively place and move isovists around. Because of the fast execution time very large 
environments, such as whole cities, can be evaluated in real-time, together with read-outs of its 
properties. 

We extend the edge operation to calculate the visibility polygon. 
 



Izaki Å., Derix C. 

|  EAEA-11 conference 2013  .  (Track 3)  Conceptual Representation: exploring the layout of the built environment  432 

VPT-BOUNDARY-EDGE-OPERATION(M, f, e, vp, r, l) 
1   veStart ← PROJECT-START(M, e, vp, r)  
2   veEnd ← PROJECT-END(M, e, vp, l) 
3   if current = NIL  
4       then first ← veStart 
5       else if EQUALS(veStart, current) = FALSE  
6                  then ADD_EDGE(current, veStart, OPEN) 
7   ADD_EDGE(veStart, veEnd, BOUNDARY) 
8   current ← veEnd 
 

Here, PROJECT-START and PROJECT-END return the intersection of the line defined by 
two points and a line segment (if the intersection is outside the segment it will return the nearest 
point), and EQUALS returns TRUE if the points have the same coordinates. Current is the current 
point of the visibility polygon during construction, initialised as NIL. A simple interface is 
provided to construct the visibility polygon: ADD_EDGE adds a new edge to the visibility 
polygon and marked as BOUNDARY or OPEN. Finally, after the query and therefore not shown 
above, if current and first are not EQUAL and not NIL, and edge from current to first closing the 
visibility polygon is added and marked as OPEN. 

 

Fig. 3 A screenshot from the interactive isovist tool showing the isovist from point v with centroid c in National Farmer's 
Bank. The open edges are drawn as dashed line segments and the boundary edges as thicker solid line segments 

Path and flow tool 
The second application shows the method applied to the problem of determining shortest 

paths and flows within and between a layered set of polygons with holes. New functionality was 
added to enable or disable parts of the circulation to visualise the effects they had on the 
movement structure across the building: in other words what would be the result of a movement 
passage being temporarily blocked in the case of maintenance work, or by omitting it from the 
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design altogether. 2D Boolean operations on the polygons from the JTS Topology Suite open 
source library enabled the implementation of blocking off certain regions of the circulation areas. 
The user could enable or disable the subtractions from within the running application. 

 

Fig. 4 Screenshot of path and flow tool for an internal Aedas project; “GEMS Academy”. Colours and line widths show the 
amount of flow. The problem consisted of investigating likely movement paths and flows in a school building, as well as 

alternative routes 

Conclusion 
The algorithm proposed in the paper responds to the current lack of fast and generic solutions 

that can address a number of different visibility determination problems. Other query based 
visibility algorithms typically have a preprocessing stage that is slower than the one we have 
shown, but that guarantee a lower time complexity for each query. In our case we have 
preprocessing stage with a low upper bound running time allowing large polygonal environments 
to be dynamically modified in real-time. The algorithm is simple to implement using well-known 
primitives such as half-edge meshes and fundamental geometric tests which are readily available 
in many computational geometry libraries or frameworks. 

Many visibility related concepts overlap between spatial architectural analysis and 
computational geometry. We believe that there are significant applications of computational 
geometry algorithms that has not yet found its way into spatial architectural analysis, as well as 
problems and structures put forward in spatial analysis that have not yet been investigated in the 
field of computational geometry. Further research is needed to test the traversal method on more 
visibility problems related to structures used in space syntax, and to compare its performance with 
other algorithms from computational geometry with a set of different architectural input sets. 
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