
EAEA-11 conference 2013 . (Track 3) Conceptual Representation: exploring the layout of the built environment | 427

 Visibility polygon traversal algorithm

Izaki, Åsmund 1 Derix, Christian 1
 Keywords: visibility in polygon with holes; query-based algorithm; spatial analysis

1. Computational Design &
Research, R&D, Aedas,
London, United Kingdom

Abstract The determination of visibility relations within polygonal
environments has applications in many different fields; In the current context it
is primarily investigated as a basis for spatial architectural analysis, and as a
design driver for architectural design from a user and occupant perspective, but
it is equally applicable to a wide range of engineering problems and it’s a well-
established topic in computational geometry.
We introduce a new query-based algorithm for traversing over the visible
convex regions of a polygon with holes from any point inside the polygon or
from any of its vertices, where each query runs in O(f’ h’ + log n) for a polygon
with n vertices, f’ visible convex partitions, and h’ visible holes, with a
preprocessing stage that runs in O(n log* n) with O(n) space. The log n
component of the query only applies to internal points. The visibility polygon
traversal algorithm is applicable to a varied set of visibility problems, including
the construction of visibility polygons (isovists), and visibility graphs of polygon
vertices and/or points inside the polygon.
The algorithmic findings are linked to spatial architectural analysis by
representing the regions of architectural or urban plans that are permeable or
visually open as polygons with holes. Two applications of the algorithm are
presented, which have enabled more responsive and dynamic user interactions
with architectural plans. These consist of an interactive isovist tool and a tool
for calculating shortest paths, flows and distances within a multi-storey layout.

Fig. 1 An interactive application of the algorithm that constructs a number of visibility
polygons in real time. Here used to manually work out an approximation to the art gallery

problem (Honsberger, 1976) in Louis Sullivan’s National Farmer's Bank of Owatonna

Izaki Å., Derix C.

| EAEA-11 conference 2013 . (Track 3) Conceptual Representation: exploring the layout of the built environment 428

Visibility methods in architecture and computational geometry
The work presented in this paper borrows methodologies and concepts from spatial

architectural analysis as well as computational geometry, and is an attempt to reconcile some of
the shared concepts and methods in these fields.

The term isovist was developed first by Tandy (1967) for landscape analysis and originally
referred to the field of view from a particular location, where visibility was understood literally in
terms of human perception. In spatial architectural analysis isovists and isovist fields were
formally introduced as a tool for the analysis and description of architectural space by Benedikt
(1979) who developed a set of mathematical measures of isovists in order to quantify a range of
visual and experiential aspects of space.

Isovists have since become one of the basic methods of analysis used in space syntax. Hillier
(1996) superimposed isovists of a set of convex polygons to show how the squares in Rome
created a network of visually connected nodes. Turner and Penn (1999) continued to investigate
the interconnectivity of points and introduced isovist integration analysis. The method which now
is commonly referred to as visibility graph analysis (VGA) (Turner et al., 2001) consisted of
creating a graph of mutually visible points on which measures such as mean depth could be
computed. As these developments have taken place, the initial idea of visibility as a perception-
based concept, then towards describing experience of space, seem now to have been replaced by
one describing movement. In VGA the input typically represents permeability rather than
visibility, where depth describes how many turns are needed in order to reach another location.
Sheep and Ruth Dalton (2009) point out the visibility accessibility problem that occurs when
there are discrepancies between visual and permeable links, and propose a layered graph to
capture these two relations explicitly.

The notion of geometric visibility in computational geometry, which seems to have been
developed almost in parallel to the architectural analysis research described so far, is regarded as
one of the most fundamental concepts and forms the foundation of a range of seemingly unrelated
problems such as polygon partitioning and robotic motion planning. Here two points, u and v, are
said to be mutually visible if the line segment bounded by u and v does not intersect any of the
line segments of the polygon in which they are either vertices of, or that they are contained
within. Point visibility polygons, or visibility regions are similar to isovists as they have been
generally applied in spatial analysis (as a 2D section rather than a 3D volume, with some
exceptions (Derix et al., 2008)), and the term visibility graph is used similarly in both fields, with
the distinction that it in computational geometry the points usually refers to vertices of a polygon,
while it in space syntax is typically assumed to be a grid of points inside a polygon. For more
detailed definitions of geometric visibility and its related problems see O’Rourke (1987).

Some visibility algorithms are output-sensitive meaning that their time complexity primarily
depends on the size of the output rather than the input. A group of these, which are similar to ours
in that they have pre-processing stage for building data structures on which they can perform
queries, are based on visibility decomposition which decomposes a polygon into visually stable
regions, a similar concept to the e-partitions proposed by Peponis et al. (1997). Lu et al. (2011)
introduced a query-based algorithm for finding the visibility of a polygon with holes that first
partitions the polygon into simple polygons. It runs in O(v + h + log2 m + h log (n / h)) time,
where v is the size of the output polygon, m is the size of the simple polygon containing the
viewpoint. The preprocessing stage has a time complexity of O(n2 log n).

For visibility graphs for a set of obstacles (equivalent of just considering the holes of the
polygon) there exist a number of output-sensitive algorithms with lower time complexity than the
one presented here. Pocchiola and Vegter (1996) runs in time O(n log n + k), where k is the
number of edges, and uses O(n) space. Also see Overmars and Welzl (1988), and Gosh and
Mount (1991).

Visibility polygon traversal algorithm

EAEA-11 conference 2013 . (Track 3) Conceptual Representation: exploring the layout of the built environment | 429

A query-based algorithm for traversing visible convex regions
The visibility polygon traversal algorithm introduced here offers a traversal of visible convex

regions of a polygon from a point. The algorithm provides a depth-first traversal, in counter-
clockwise order. We use a polygon with holes P or a convex partition mesh M = (V, E, F)
describing P with a point vp inside the polygon, or any polygon vertex pv ∈ P or mesh vertex mv
∈ M as the source of the visibility calculation. These options can be used when a mesh
representation already exists for other purposes (e.g. for rendering or as a modeling approach) and
for making any number of subsequent queries on the same polygon from different viewpoints.

The algorithm is based on a modified depth-first search (DFS) through the face connectivity
graph of the mesh. The traversal keeps left and right constraints for each new face it visits, which
is continuously narrowed by the vertices of the edges it has traversed thus far, and consists of the
rightmost left point l, and the leftmost right point r from vp in the direction of the search. An
adjacent face is only visited if the common edge falls within these constraints. The algorithm
differs from a standard DFS in that we do not keep track of already visited faces. This is not
necessary due to the left and right constraints, and in certain cases a face will be correctly visited
several times with different constraints.

Fig. 2 The execution of the visibility polygon traversal algorithm. The input is a polygon with holes and the point vp. Before
the execution of the traversal the polygon is triangulated and the starting triangle in which vp is contained is found. In (a)-

(g) the darker shade indicate the current triangle and the brighter shade indicate the internal stack. Here, the traversal
algorithm is used to build a representation of the visibility polygon that distinguishes between open (permeable) edges
and boundary (solid) edges, but the same mechanism can be used to build other structures, such as the visibility graph

Two configurable operations are explicitly written out in the pseudocode 1 to support
extensions that solve specific visibility determination problems.

1 The pseudocode conventions used here follow the rules described in Cormen et al. (2001, p. 19).

Izaki Å., Derix C.

| EAEA-11 conference 2013 . (Track 3) Conceptual Representation: exploring the layout of the built environment 430

VPT-INSIDE(P, vp)
1 M ← TRIANGULATE(P)
2 f ← FIND-FACE(M, vp)
3 VPT-INSIDE(M, f, vp)

VPT-INSIDE(M, f, vp)
1 VPT-VISIT(M, f, NIL, vp, NIL, NIL)

VPT-VERTEX(P, pv)
1 M ← TRIANGULATE(P)
2 mv ← FIND-VERTEX(M, pv)
3 VPT-VERTEX(M, mv)

VPT-VERTEX(M, mv)
1 vp ← position[mv]
2 for each f ∈ F[mv]
3 do r ← position[NEXT(f, mv)]
4 l ← position[PREVIOUS(f, mv)]
5 VPT-VISIT(M, f, NIL, vp, r, l)

VPT-VISIT(M, f, eParent, vp, r, l)
1 VPT-FACE-OPERATION(M, f, eParent, vp, r, l)
2 for each e ∈ EDGES(f, eParent)
3 do eRight ← pos[start[e]]
4 eLeft ← pos[end[e]]
5 if EDGE-IN-VIEW(vp, r, l, eRight, eLeft)
6 then fAdj ← ADJACENT(f, e)
7 if fAdj = NIL
8 then VPT-BOUNDARY-EDGE-OPERATION(M, f, e, vp, r, l)
9 else if eRight ≠ vp and eLeft ≠ vp
10 then rAdj ← LEFTMOST(vp, r, eRight)
11 lAdj ← RIGHTMOST(vp, l, eLeft)
12 VPT-VISIT(M, fAdj, e, vp, rAdj, lAdj)

EDGE-IN-VIEW(vp, r, l, eRight, eLeft)
1 if r = NIL or l = NIL
2 then return TRUE
3 if TEST(vp, l, eRight) = LEFT or TEST(vp, r, eLeft) = RIGHT
4 then return FALSE
5 return TRUE

LEFTMOST(vp, r, eRight)
1 if r = NIL or TEST(vp, r, eRight) = LEFT
2 then return eRight
3 else return r

VPT-FACE-OPERATION(M, f, eParent, vp, r, l)
1 ► A configurable operation. The visible convex region is bounded by the input parameters

VPT-BOUNDARY-EDGE-OPERATION(M, f, e, vp, r, l)
1 ► A configurable operation. The visible edge is bounded by the input parameters

Visibility polygon traversal algorithm

EAEA-11 conference 2013 . (Track 3) Conceptual Representation: exploring the layout of the built environment | 431

The pseudocode specifies both the cases of visibility from a point within a polygon or mesh
(VPT-INSIDE), or from one of the vertices of a polygon or a mesh (VPT-VERTEX). In the case
of using a polygon as an input, it is first partitioned into convex polygons. Any triangulation
which does not insert additional vertices can be used, but Seidel’s algorithm provides the fastest
running time of O(n log* n) (Seidel, 1991) and it has been shown to work for polygons with holes
(Lamot et al., 2000).

A half-edge mesh (Weiler, 1988) or equivalent data structure is used that allows constant time
access to adjacent faces and can iterate over the edges of the face in a counter-clockwise order.
ADJACENT(f, e) is included in the interface to the mesh data structure, and returns the adjacent
face over an edge, or if the edge is on the boundary it returns a null pointer. The EDGES(f, e)
operation returns the edges of a face except e, in a counter-clockwise order starting from the edge
adjacent to e, to ensure a counter-clockwise order of the whole traversal. In the same manner e ∈
E[f] refers to the edges of f in a counter-clockwise order, and f ∈ F[mv] refers to the faces adjacent
to mv in a counter-clockwise order.

Depending on the application we may need to either locate the mesh vertex corresponding to
the polygon vertex (FIND-VERTEX), or to locate the partition a point is contained in (FIND-
FACE). For mesh vertices we can create references when the mesh is created, and they can be
retrieved in O(1) time. The same is true when viewpoints inside the mesh are determined from the
faces themselves (for example for a uniform grid). However if vp is arbitrary we need to use a
planar point location algorithm. The algorithm by Kirkpatrick (1983) which finds the triangle in
O(log n) time can be used with our triangulation M, which results in additional preprocessing that
runs in only O(n), and does not change the time complexity order of the preprocessing stage.

Finally, the algorithm relies on a geometric half-plane test. TEST returns RIGHT, LEFT OR
STRAIGHT depending on the orientation of the third point in relation to the line defined by the
two first. LEFTMOST and RIGHTMOST takes three points as parameters and simply return a
reference to which of the two last point is further left, or right, in relation to the first points, given
that the angle between the points is always smaller than 180°.

Additional constraints are straightforward to include in the algorithm. For example a view
triangle with a limited field of view can be set by changing the initialisation of the query, or a
maximum metric traversal distance can be defined by changing the return condition of the
recursion.

We see from this preliminary analysis that each query takes O(f’ h’ + log n) time where f’ are
the number of visible faces and h’ are the number of visible holes (meaning partly or fully visible
from vp), and n is the number of vertices in the original polygon. Each visible convex partition is
visited for the number of different visible convex regions of f which is bounded from above by h’.
Furthermore we see that the log n component can be discarded for the cases where we already
know which partition vp lies in or when vp is one of the vertices of the original polygon.

The traversal has an output sensitive running time; meaning that the running time is
dependent on the number of visible convex partitions. The running time of the query is not
guaranteed to be proportional to the number of vertices in the output visibility polygon or number
of edges in the visibility graph, since some of the visited regions may not contain visible
boundary edges (only internal edges), nor visible vertices.

Isovist tool
As case studies we have integrated the algorithm in two existing tools at Aedas R&D. The

first tool calculates the visibility polygon of one or more points and allows the user to
interactively place and move isovists around. Because of the fast execution time very large
environments, such as whole cities, can be evaluated in real-time, together with read-outs of its
properties.

We extend the edge operation to calculate the visibility polygon.

Izaki Å., Derix C.

| EAEA-11 conference 2013 . (Track 3) Conceptual Representation: exploring the layout of the built environment 432

VPT-BOUNDARY-EDGE-OPERATION(M, f, e, vp, r, l)
1 veStart ← PROJECT-START(M, e, vp, r)
2 veEnd ← PROJECT-END(M, e, vp, l)
3 if current = NIL
4 then first ← veStart
5 else if EQUALS(veStart, current) = FALSE
6 then ADD_EDGE(current, veStart, OPEN)
7 ADD_EDGE(veStart, veEnd, BOUNDARY)
8 current ← veEnd

Here, PROJECT-START and PROJECT-END return the intersection of the line defined by
two points and a line segment (if the intersection is outside the segment it will return the nearest
point), and EQUALS returns TRUE if the points have the same coordinates. Current is the current
point of the visibility polygon during construction, initialised as NIL. A simple interface is
provided to construct the visibility polygon: ADD_EDGE adds a new edge to the visibility
polygon and marked as BOUNDARY or OPEN. Finally, after the query and therefore not shown
above, if current and first are not EQUAL and not NIL, and edge from current to first closing the
visibility polygon is added and marked as OPEN.

Fig. 3 A screenshot from the interactive isovist tool showing the isovist from point v with centroid c in National Farmer's
Bank. The open edges are drawn as dashed line segments and the boundary edges as thicker solid line segments

Path and flow tool
The second application shows the method applied to the problem of determining shortest

paths and flows within and between a layered set of polygons with holes. New functionality was
added to enable or disable parts of the circulation to visualise the effects they had on the
movement structure across the building: in other words what would be the result of a movement
passage being temporarily blocked in the case of maintenance work, or by omitting it from the

Visibility polygon traversal algorithm

EAEA-11 conference 2013 . (Track 3) Conceptual Representation: exploring the layout of the built environment | 433

design altogether. 2D Boolean operations on the polygons from the JTS Topology Suite open
source library enabled the implementation of blocking off certain regions of the circulation areas.
The user could enable or disable the subtractions from within the running application.

Fig. 4 Screenshot of path and flow tool for an internal Aedas project; “GEMS Academy”. Colours and line widths show the
amount of flow. The problem consisted of investigating likely movement paths and flows in a school building, as well as

alternative routes

Conclusion
The algorithm proposed in the paper responds to the current lack of fast and generic solutions

that can address a number of different visibility determination problems. Other query based
visibility algorithms typically have a preprocessing stage that is slower than the one we have
shown, but that guarantee a lower time complexity for each query. In our case we have
preprocessing stage with a low upper bound running time allowing large polygonal environments
to be dynamically modified in real-time. The algorithm is simple to implement using well-known
primitives such as half-edge meshes and fundamental geometric tests which are readily available
in many computational geometry libraries or frameworks.

Many visibility related concepts overlap between spatial architectural analysis and
computational geometry. We believe that there are significant applications of computational
geometry algorithms that has not yet found its way into spatial architectural analysis, as well as
problems and structures put forward in spatial analysis that have not yet been investigated in the
field of computational geometry. Further research is needed to test the traversal method on more
visibility problems related to structures used in space syntax, and to compare its performance with
other algorithms from computational geometry with a set of different architectural input sets.

Acknowledgments
The research leading to these results has received funding from the European Union Seventh

Framework Programme (FP7/2007- 2013) under grant agreement number 242497.

Izaki Å., Derix C.

| EAEA-11 conference 2013 . (Track 3) Conceptual Representation: exploring the layout of the built environment 434

References
Benedikt, M.L. (1979). To take hold of space: isovists and isovist fields. Environment and
Planning B: Planning and Design, 6, 47–65.

Cormen, T.H., Leiserson, C. E., Rivest, R.L., Stein, C. (2003). Introduction to Algorithms. The
MIT press.

Dalton, S., Dalton, R. (2009). Solutions for visibility, accessibility and signage problems via
layered graphs. In D. Koch, L. Marcus, J. Steen (Eds.), Proceedings to the 7th International
Space Syntax Symposium, 9-11 June 2009, Stockholm.

Derix, C., Gamlesæter, Å., arranza, P.M. (2008). 3D Isovists and Spatial Sensations: Two
Methods and a case Study. In S. Haq, C. Hölscher, S. Torgrude (Eds.), Movement and Orientation
in Built Environments: Evaluating Design Rationale and User Cognition: Proceedings of
EDRAMOVE & SFB TR8 conference on Spatial Cognition, 28 May 2008 (67-72).

Ghosh, S.K., Mount, D.M. (1991). An output-sensitive algorithm for computing visibility graphs.
SIAM Journal on Computing, 20, 888–910.

Hillier, B. (1996). Space is the Machine: A Configurational Theory of Architecture. Cambridge:
Cambridge University Press.

Honsberger, R. (1976). Chvátal’s Art Gallery Theorem. In Mathematical Gems II (104-110).
Mathematical Association of America.

Kirkpatrick, D (1983). Optimal search in planar subdivisions. SIAM Journal on Computing 12 (1),
28-35.

O’Rourke, J. (1987). Art Gallery Theorems and Algorithms. New York: Oxford University Press.

Overmars, M.H., Welzl, E. (1988). New methods for computing visibility graphs. In Proceedings
of the 4th Annual ACM Symposium on Computational Geometry (164–171).

Peponis, J., Wineman, J., Rashid M., Hong Kim S., Bafna S. (1997). On the description of shape
and spatial configuration inside buildings: convex partitions and their local properties.
Environment and Planning B: Planning and Design, 24, 761-781.

Pocchiola, M., Vegter, G. (1996). Topologically sweeping visibility complexes via pseudo-
triangulations. Discrete & Computational Geometry, 16, 419–453.

Seidel, R. (1991). A simple and fast incremental randomized algorithm for computing trapezoidal
decompositions and for triangulating polygons. Computational Geometry: Theory and
Applications, 1, 51-64.

Tandy, C.R.V. (1967). The isovist method of landscape survey. Methods of Landscape Analysis,
9-11.

Turner, A., Penn, A. (1999). Making isovists syntactic: Isovist integration analysis. In
Proceedings of the 2nd International Symposium on Space Syntax, April 1999 (1–9). Brasilia:
Universidad de Brasil.

Turner, A., Doxa, M., O´Sullivan, D., Penn, A. (2001). From isovists to visibility graphs: a
methodology for the analysis of architectural space. Environmental and Planning B: Planning
and Design, 28, 103–121.

Weiler, K. (1988). The radial edge structure: a topological representation for non-manifold
geometric boundary modeling. In Geometric modeling for CAD applications (3-36). Amsterdam:
Elsevier Science Publish.

Žalik, B., Lamot, M. (2000). A contribution to triangulation algorithms for simple polygons.
Journal of Computing and Information Technology, 8 (4), 319-331.

